Selective separation of the major whey proteins using ion exchange membranes.

نویسندگان

  • S Goodall
  • A S Grandison
  • P J Jauregi
  • J Price
چکیده

Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure beta-lactoglobulin solution was in excess of 1.5 mg/cm2 of membrane. This binding capacity was reduced to approximately 1.2 mg/cm2 when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L(+) lactic acid production and separation from dairy wastes(whey):in situe separation of lactic acid using lon-exchange resins in automatic control of PH.

Whey with a large amount of BOD(50000 PPM) is a dangerous environmental pollutant.this important source of lavtose(4-5%) is A USEFULL SUBSTRATE FOR A RANGE of fermentation processes.lacitic acid with swvwral applications in industries is one of these products.Specially L(+) isomer of this acid worthing 10 times as much as the mixture of L&D,is used in medical purposes such as absorbable surgica...

متن کامل

Ability of Aphron Flotation in Whey Treatment

Whey contains more than half of total solids present in the original milk, which includes 20% of the proteins, most of the lactose, minerals and water soluble vitamins. In this study, selective separation of whey components by Aphron flotation (separation of ultrafine particles by micro-bubbles) has been investigated. It has been shown that it is possible to recover valuable components of w...

متن کامل

Fouling Mechanism Study of Nanoporous Membrane by Ultrafitration of Whey Proteins

One of the barriers during whey filtration using UF membrane is the fouling phenomenon of the membrane, which is caused by whey proteins. In this work, the UF membranes were prepared using polysufone (PSf), dimethyl formamide (DMF), 1 wt.% poly vinyl pyrrolidone (PVP) and different concentrations of LiCl via phase inversion induced by immersion precipitation. The prepared membranes were charact...

متن کامل

Study the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry

The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...

متن کامل

Investigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application

In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of dairy science

دوره 91 1  شماره 

صفحات  -

تاریخ انتشار 2008